Panel Simulation with Custom Joints

Here’s a quick test of simulating the joints between rigid panels.

Instructions:

  • Hold right MB and drag to rotate the view
  • Zoom with mousewheel
  • Left Ctrl + Left MB on a panel or joint and it will become a moveable handle (object will turn yellow). Repeat to disable.
  • Left Shift + Left MB on a panel or joint and it will become a positional restraint (object will turn red). Repeat to disable.
  • Add a uniform force upwards using the buttons on the top left of the screen
  • Adjust the force necessary to break the joints with the scrollbar

Leave a comment

Filed under Architecture, Geometry, Mesh Consultants

Single Tile Aperiodicity

Although a couple years old (2010), this result is still quite a breakthrough: Socolar and Taylor have constructed a single, painted tile that when assembled correctly, can only produce an aperiodic tiling of the plane. These are some images from the paper:

 

 

Leave a comment

Filed under Tilings

New Home!

Mesh will be calling the Fields Institute home for the immediate future! With hundreds of world class mathematicians visiting, researching, lecturing, or just chatting at this great (and great looking) institution, I could hardly ask for a more appropriate office location.

Leave a comment

Filed under Launch, Mesh Consultants

Pressure Particles

Although by no means the bleeding edge of SPH simulations, it does implement a tweaked Kd-Tree search for n nearest neighbours, the standard SPH functions (kernels, viscosity, and pressure), and runs at interactive rates.

Click on the image to try it out:

Leave a comment

Filed under Geometry, Mesh Consultants

Mesh!

I’m pretty excited about my new project: 

Getting everything together for the launch has been a bit crazy, but we’re off!

The idea is this:

Mesh is a technical consulting firm that offers a spectrum of services that stimulate conceptual development, rationalize complex design, and effectively implement high level research in the digital design industry.

Our four core services groups are: Geometry Consulting, Custom Algorithm Design, Research and Development, and Simulation.

These services have been specifically geared to architects, engineers, manufacturers, artists, and game developers looking to develop new or existing technologies that will add value to their services and products.

Leave a comment

Filed under Architecture, Architecture in Combination, Furniture, Geometry, Grasshopper, Launch

SPH Numerical Stability

I’ve been playing around with SPH simulations, and in SPH as in any physics based simulation, the length of the time step in the integration process is critical. So, this video shows what happens right at the edge of numerical stability. With a fixed time step, the force calculation sometimes gives a force that’s too large to be reasonably dealt with – this then causes a little chain reaction and results in some pretty wild behaviour….I should say that not everything in the video is cause by numerical instability  – I’ve implemented a basic user force input that acts on the particles when the user clicks the screen.

Simulations are used for predicating things (i.e. how a structure will deform, how a fluid will flow, etc…). However, their predictive qualities are always subject to conditions and restrictions – there is no perfect physics engine (yet), and we are certainly a long way away from human interaction simulation (another one of my favorite topics…). As a result, simulations are often used simply as a starting point, sometimes for more rigorous analysis, but also for purely aesthetic choices. From that perspective, perhaps studying very “unrealistic” applications of  simulation engines will open some new geometrical directions….

Leave a comment

Filed under Architecture

Amsterdam Bridge Competition

We had a lot of fun working on this bridge concept:

Image

Unfortunately, we didn’t win the competition. However, I still think the idea is pretty cool. Here’s some text:

ZwerverBrug, or literally, Wanderer Bridge, is both a means and an end. Inspired by traditional two arch stone bridges, the Zwerver uses primary steel tubes and secondary webbing clad in pre-finished steel panels to support a stone clad deck. The structure and form work together, creating two unique experiences. First, an elevated direct route across the river providing the necessary height to allow the majority of river traffic to pass underneath. Secondly, a stepped and lowered boulevard housing a cafe and affording conversations, seating, lounging, and strolling. In order ensure accessibility, the steps in the deck are flattened when the slope of the underlying surface is safely transversible by wheelchair, stroller, walker, and of course bicycle.

So, Wanderer, which way are you going?

One of the interesting challenges was creating a GH definition for the squashed steps. The idea is that given a a surface contoured by height intervals (a process that has been nicely componentized…), the definition grabs the surface normal at a bunch of points along each contour curve. If the surface normal varies from the z-axis by more than a preset amount, the curve pops up, creating a step.

Image

Crazy as it looks, this thing might actually work:

Image

  1. Gap between glass gaurd and stone wearing surface for drainage
  2. Cast-in anchor for glass guard connections
  3. Cross slope to exterior for drainage
  4. Precast concrete deck panels
  5. Stone wearing surface
  6. Setting bed
  7. Continuous stainless steel pipe
  8. Laminated glass guard
  9. Intermittent patch fittings
  10. Primary curved pipe
  11. Pre-finished metal panel cladding
  12. Web openings for distribution of services
  13. Intermittent transverse members rigidly coupling primary pipes

Leave a comment

Filed under Architecture, Competition, Geometry